3.3.46 \(\int \frac {x^3}{(d+e x) (a+c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=123 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{c^{3/2} e}+\frac {a (d-e x)}{c \sqrt {a+c x^2} \left (a e^2+c d^2\right )}+\frac {d^3 \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{e \left (a e^2+c d^2\right )^{3/2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {1647, 844, 217, 206, 725} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{c^{3/2} e}+\frac {a (d-e x)}{c \sqrt {a+c x^2} \left (a e^2+c d^2\right )}+\frac {d^3 \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{e \left (a e^2+c d^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3/((d + e*x)*(a + c*x^2)^(3/2)),x]

[Out]

(a*(d - e*x))/(c*(c*d^2 + a*e^2)*Sqrt[a + c*x^2]) + ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]]/(c^(3/2)*e) + (d^3*Ar
cTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/(e*(c*d^2 + a*e^2)^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1647

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(d +
 e*x)^m*Pq, a + c*x^2, x], f = Coeff[PolynomialRemainder[(d + e*x)^m*Pq, a + c*x^2, x], x, 0], g = Coeff[Polyn
omialRemainder[(d + e*x)^m*Pq, a + c*x^2, x], x, 1]}, Simp[((a*g - c*f*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1))
, x] + Dist[1/(2*a*c*(p + 1)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*ExpandToSum[(2*a*c*(p + 1)*Q)/(d + e*x)^m +
 (c*f*(2*p + 3))/(d + e*x)^m, x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && NeQ[c*d^2 + a*e^2, 0] &
& LtQ[p, -1] && ILtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {x^3}{(d+e x) \left (a+c x^2\right )^{3/2}} \, dx &=\frac {a (d-e x)}{c \left (c d^2+a e^2\right ) \sqrt {a+c x^2}}-\frac {\int \frac {-\frac {a^2 d e}{c d^2+a e^2}-a x}{(d+e x) \sqrt {a+c x^2}} \, dx}{a c}\\ &=\frac {a (d-e x)}{c \left (c d^2+a e^2\right ) \sqrt {a+c x^2}}+\frac {\int \frac {1}{\sqrt {a+c x^2}} \, dx}{c e}-\frac {d^3 \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx}{e \left (c d^2+a e^2\right )}\\ &=\frac {a (d-e x)}{c \left (c d^2+a e^2\right ) \sqrt {a+c x^2}}+\frac {\operatorname {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{c e}+\frac {d^3 \operatorname {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right )}{e \left (c d^2+a e^2\right )}\\ &=\frac {a (d-e x)}{c \left (c d^2+a e^2\right ) \sqrt {a+c x^2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{c^{3/2} e}+\frac {d^3 \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{e \left (c d^2+a e^2\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.28, size = 153, normalized size = 1.24 \begin {gather*} \frac {\frac {\sqrt {c} \left (a e (d-e x) \sqrt {a e^2+c d^2}+c d^3 \sqrt {a+c x^2} \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )\right )}{\left (a e^2+c d^2\right )^{3/2}}+\sqrt {a} \sqrt {\frac {c x^2}{a}+1} \sinh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a}}\right )}{c^{3/2} e \sqrt {a+c x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3/((d + e*x)*(a + c*x^2)^(3/2)),x]

[Out]

(Sqrt[a]*Sqrt[1 + (c*x^2)/a]*ArcSinh[(Sqrt[c]*x)/Sqrt[a]] + (Sqrt[c]*(a*e*Sqrt[c*d^2 + a*e^2]*(d - e*x) + c*d^
3*Sqrt[a + c*x^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])]))/(c*d^2 + a*e^2)^(3/2))/(c^(3/
2)*e*Sqrt[a + c*x^2])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.69, size = 189, normalized size = 1.54 \begin {gather*} -\frac {\log \left (\sqrt {a+c x^2}-\sqrt {c} x\right )}{c^{3/2} e}+\frac {a d-a e x}{c \sqrt {a+c x^2} \left (a e^2+c d^2\right )}-\frac {2 d^3 \sqrt {-a e^2-c d^2} \tan ^{-1}\left (-\frac {e \sqrt {a+c x^2}}{\sqrt {-a e^2-c d^2}}+\frac {\sqrt {c} e x}{\sqrt {-a e^2-c d^2}}+\frac {\sqrt {c} d}{\sqrt {-a e^2-c d^2}}\right )}{e \left (a e^2+c d^2\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^3/((d + e*x)*(a + c*x^2)^(3/2)),x]

[Out]

(a*d - a*e*x)/(c*(c*d^2 + a*e^2)*Sqrt[a + c*x^2]) - (2*d^3*Sqrt[-(c*d^2) - a*e^2]*ArcTan[(Sqrt[c]*d)/Sqrt[-(c*
d^2) - a*e^2] + (Sqrt[c]*e*x)/Sqrt[-(c*d^2) - a*e^2] - (e*Sqrt[a + c*x^2])/Sqrt[-(c*d^2) - a*e^2]])/(e*(c*d^2
+ a*e^2)^2) - Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2]]/(c^(3/2)*e)

________________________________________________________________________________________

fricas [B]  time = 4.69, size = 1323, normalized size = 10.76

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x+d)/(c*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

[1/2*((a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4 + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*x^2)*sqrt(c)*log(-2*c*x
^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + (c^3*d^3*x^2 + a*c^2*d^3)*sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d
^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2
*d*e*x + d^2)) + 2*(a*c^2*d^3*e + a^2*c*d*e^3 - (a*c^2*d^2*e^2 + a^2*c*e^4)*x)*sqrt(c*x^2 + a))/(a*c^4*d^4*e +
 2*a^2*c^3*d^2*e^3 + a^3*c^2*e^5 + (c^5*d^4*e + 2*a*c^4*d^2*e^3 + a^2*c^3*e^5)*x^2), 1/2*(2*(c^3*d^3*x^2 + a*c
^2*d^3)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c
^2*d^2 + a*c*e^2)*x^2)) + (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4 + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*x^2
)*sqrt(c)*log(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + 2*(a*c^2*d^3*e + a^2*c*d*e^3 - (a*c^2*d^2*e^2 + a^
2*c*e^4)*x)*sqrt(c*x^2 + a))/(a*c^4*d^4*e + 2*a^2*c^3*d^2*e^3 + a^3*c^2*e^5 + (c^5*d^4*e + 2*a*c^4*d^2*e^3 + a
^2*c^3*e^5)*x^2), -1/2*(2*(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4 + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*x^2
)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) - (c^3*d^3*x^2 + a*c^2*d^3)*sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x
 - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2
*x^2 + 2*d*e*x + d^2)) - 2*(a*c^2*d^3*e + a^2*c*d*e^3 - (a*c^2*d^2*e^2 + a^2*c*e^4)*x)*sqrt(c*x^2 + a))/(a*c^4
*d^4*e + 2*a^2*c^3*d^2*e^3 + a^3*c^2*e^5 + (c^5*d^4*e + 2*a*c^4*d^2*e^3 + a^2*c^3*e^5)*x^2), ((c^3*d^3*x^2 + a
*c^2*d^3)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 +
(c^2*d^2 + a*c*e^2)*x^2)) - (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4 + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*x
^2)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) + (a*c^2*d^3*e + a^2*c*d*e^3 - (a*c^2*d^2*e^2 + a^2*c*e^4)*x)*
sqrt(c*x^2 + a))/(a*c^4*d^4*e + 2*a^2*c^3*d^2*e^3 + a^3*c^2*e^5 + (c^5*d^4*e + 2*a*c^4*d^2*e^3 + a^2*c^3*e^5)*
x^2)]

________________________________________________________________________________________

giac [A]  time = 0.24, size = 219, normalized size = 1.78 \begin {gather*} -\frac {2 \, d^{3} \arctan \left (-\frac {{\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} - a e^{2}}}\right )}{{\left (c d^{2} e + a e^{3}\right )} \sqrt {-c d^{2} - a e^{2}}} - \frac {\frac {{\left (a c^{2} d^{2} e^{3} + a^{2} c e^{5}\right )} x}{c^{4} d^{4} e^{2} + 2 \, a c^{3} d^{2} e^{4} + a^{2} c^{2} e^{6}} - \frac {a c^{2} d^{3} e^{2} + a^{2} c d e^{4}}{c^{4} d^{4} e^{2} + 2 \, a c^{3} d^{2} e^{4} + a^{2} c^{2} e^{6}}}{\sqrt {c x^{2} + a}} - \frac {e^{\left (-1\right )} \log \left ({\left | -\sqrt {c} x + \sqrt {c x^{2} + a} \right |}\right )}{c^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x+d)/(c*x^2+a)^(3/2),x, algorithm="giac")

[Out]

-2*d^3*arctan(-((sqrt(c)*x - sqrt(c*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 - a*e^2))/((c*d^2*e + a*e^3)*sqrt(-c*
d^2 - a*e^2)) - ((a*c^2*d^2*e^3 + a^2*c*e^5)*x/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6) - (a*c^2*d^3*e^2
+ a^2*c*d*e^4)/(c^4*d^4*e^2 + 2*a*c^3*d^2*e^4 + a^2*c^2*e^6))/sqrt(c*x^2 + a) - e^(-1)*log(abs(-sqrt(c)*x + sq
rt(c*x^2 + a)))/c^(3/2)

________________________________________________________________________________________

maple [B]  time = 0.01, size = 354, normalized size = 2.88 \begin {gather*} -\frac {c \,d^{4} x}{\left (a \,e^{2}+c \,d^{2}\right ) \sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, a \,e^{3}}+\frac {d^{3} \ln \left (\frac {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\frac {2 a \,e^{2}+2 c \,d^{2}}{e^{2}}+2 \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, \sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{\left (a \,e^{2}+c \,d^{2}\right ) \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, e^{2}}-\frac {d^{3}}{\left (a \,e^{2}+c \,d^{2}\right ) \sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, e^{2}}+\frac {d^{2} x}{\sqrt {c \,x^{2}+a}\, a \,e^{3}}-\frac {x}{\sqrt {c \,x^{2}+a}\, c e}+\frac {\ln \left (\sqrt {c}\, x +\sqrt {c \,x^{2}+a}\right )}{c^{\frac {3}{2}} e}+\frac {d}{\sqrt {c \,x^{2}+a}\, c \,e^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(e*x+d)/(c*x^2+a)^(3/2),x)

[Out]

-1/e*x/c/(c*x^2+a)^(1/2)+1/e/c^(3/2)*ln(c^(1/2)*x+(c*x^2+a)^(1/2))+d/e^2/c/(c*x^2+a)^(1/2)+d^2/e^3*x/a/(c*x^2+
a)^(1/2)-d^3/e^2/(a*e^2+c*d^2)/(-2*(x+d/e)*c*d/e+(x+d/e)^2*c+(a*e^2+c*d^2)/e^2)^(1/2)-d^4/e^3/(a*e^2+c*d^2)/a/
(-2*(x+d/e)*c*d/e+(x+d/e)^2*c+(a*e^2+c*d^2)/e^2)^(1/2)*c*x+d^3/e^2/(a*e^2+c*d^2)/((a*e^2+c*d^2)/e^2)^(1/2)*ln(
(-2*(x+d/e)*c*d/e+2*(a*e^2+c*d^2)/e^2+2*((a*e^2+c*d^2)/e^2)^(1/2)*(-2*(x+d/e)*c*d/e+(x+d/e)^2*c+(a*e^2+c*d^2)/
e^2)^(1/2))/(x+d/e))

________________________________________________________________________________________

maxima [A]  time = 0.59, size = 211, normalized size = 1.72 \begin {gather*} -\frac {c d^{4} x}{\sqrt {c x^{2} + a} a c d^{2} e^{3} + \sqrt {c x^{2} + a} a^{2} e^{5}} - \frac {d^{3}}{\sqrt {c x^{2} + a} c d^{2} e^{2} + \sqrt {c x^{2} + a} a e^{4}} + \frac {d^{2} x}{\sqrt {c x^{2} + a} a e^{3}} - \frac {x}{\sqrt {c x^{2} + a} c e} + \frac {\operatorname {arsinh}\left (\frac {c x}{\sqrt {a c}}\right )}{c^{\frac {3}{2}} e} - \frac {d^{3} \operatorname {arsinh}\left (\frac {c d x}{\sqrt {a c} {\left | e x + d \right |}} - \frac {a e}{\sqrt {a c} {\left | e x + d \right |}}\right )}{{\left (a + \frac {c d^{2}}{e^{2}}\right )}^{\frac {3}{2}} e^{4}} + \frac {d}{\sqrt {c x^{2} + a} c e^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x+d)/(c*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

-c*d^4*x/(sqrt(c*x^2 + a)*a*c*d^2*e^3 + sqrt(c*x^2 + a)*a^2*e^5) - d^3/(sqrt(c*x^2 + a)*c*d^2*e^2 + sqrt(c*x^2
 + a)*a*e^4) + d^2*x/(sqrt(c*x^2 + a)*a*e^3) - x/(sqrt(c*x^2 + a)*c*e) + arcsinh(c*x/sqrt(a*c))/(c^(3/2)*e) -
d^3*arcsinh(c*d*x/(sqrt(a*c)*abs(e*x + d)) - a*e/(sqrt(a*c)*abs(e*x + d)))/((a + c*d^2/e^2)^(3/2)*e^4) + d/(sq
rt(c*x^2 + a)*c*e^2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^3}{{\left (c\,x^2+a\right )}^{3/2}\,\left (d+e\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/((a + c*x^2)^(3/2)*(d + e*x)),x)

[Out]

int(x^3/((a + c*x^2)^(3/2)*(d + e*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3}}{\left (a + c x^{2}\right )^{\frac {3}{2}} \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(e*x+d)/(c*x**2+a)**(3/2),x)

[Out]

Integral(x**3/((a + c*x**2)**(3/2)*(d + e*x)), x)

________________________________________________________________________________________